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ABSTRACT 
The proliferation of online crowdsourcing information via mobile technology intervention achieved progressive 
learning in recent times. The study seeks the mobility of crowds using internet-contents as crowdsourcing 
knowledge phenomenon in community-learning task actualization. Bandura’s Social Learning Theory (SLT) and TPB 
induced and investigated 361 respondents among international students using IBM Amos v. 25 for the analysis. 
Results found exogenous variables were positively significant, whiles broadband moderation on mobile learning 
behavior run-up. Mobile learning mediation magnifies the behavior actualization effectiveness. Significantly, 
crowdsource at the individual level colored internet-content via mobile learning technology collaborated 
communication problem-solving tasks. Mobility of learning makes a mountain of molehills in knowledge sourcing, 
communication community-centered performance. 
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INTRODUCTION 

Technology progress on ‘crowd-learning’ source emanates on 
communication through innovative mobile-learning constellation in 
society (Cortez, 2020). Crowdsource technology is an interactive 
communication process digital knowledge-sourcing, influenced by 
internet content in a dispersed crowd (learners). Epi Ludvik (2018) 
crowdsource modeled around virtual communication in a digital 
society, environment all done under the power of crowds on web-
contents (Peng, Liang, & Zhu, 2019). Communication is a social process 
influence by repository sites, content meaningful to a crowd of learners 
(Wang, Ding, & Yu, 2019). Buecheler et al. (2010) classified Wikipedia 
as crowdsource whiles Huberman et al. (2009) also viewed YouTube 
typical example of crowdsourcing open-innovation. Mobile learning 
communication is a continuous performance collaborative for effective 
broadband in higher learning setting (Halder, Halder, & Guha, 2015), 
pivotal human-centric nodes connect learners in the social setting 
(Smirnov, Easterday, & Gerber, 2018). The study seeks to unearth the 
mobility communication among learners knowledge-sourced via 
internet-content social collective task performance empowered by the 
systemic broadband pool (Paulin & Haythornthwaite, 2016). 

The application of mobile sources in the educational reign 
reinforces the mobile users network-connected by a unique form of 
centrality index: Google, Baidu, bing, Wikipedia for information 
(Swanlund & Schuurman, 2016). The current dispensation of 

smartphone user demographics surpasses a 3billion forecasted growth 
rate of 700 million in the future (Statista, 2019). The daily time spent 
on sourcing information from mobile handheld devices has enhanced 
continuous education at any time, estimated more than 4 hours a day 
for learning tendencies. The efficiency of mobile broad-bandwidth 
justifies the numerous behaviors of user effectiveness (Petrovčič, 
Slavec, & Dolničar, 2018). Again, the self-learner tendency over the 
technology makes a cogent connection to a broadband mobile-device 
for information surfing, insightfully accessible in a larger group 
(crowds). Learners view that the world web-based knowledge 
simplifies learning mobility accessible via the internet-content (Çakar 
Mengü & Mengü, 2017). The era of science and technology advocacy of 
internet information systems using mobile communication is far-
fetched. In the academic learning domain, the technology synergy has 
enabled self-learner motivation and retention, in a group or 
individually, in resolving tasks interactive settings (Gregori, Zhang, et 
al., 2018).  

The study purpose proposed two objectives; firstly, socio-Integra 
mobile technology crowdsource-learner usefulness as collaborative and 
effective continuous education effectiveness through broadband 
efficacy. Integrated social-community learning concepts, cognitively 
processes online content communication in the absence of instructions, 
motor reproduction, or reinforcement. The second objective is to 
explore broadband moderation and mobile learning behavioral 
mediation over performance actualization in education. Mobile 
behavior as an intervention process enables retention, motivation, and 
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performance actualization. There is a scanty body of knowledge on the 
individual crowdsourcing technology as internet-content 
enlightenment. Specifically, broadband internet-coordinates mobile 
learning will ascertain the relationship accomplishment of individual 
mobile collaborative learning in the community (ambient self-
learning).  

RQ:  To what extent can crowdsource technology communication 
efficiency augment online learning at personal knowledge 
sourcing? 

Social Learning Theory (SLT) and Theory of Planned Behavior 

(TPB) 

This research on mobile communication centers on the 
psychological perspective of technology. We focus on knowledge-
centered and community-centered communication technology 
connecting to learners’ perceptions, expectations, and attitudes towards 
the digital age (Cumiskey & Ling, 2015; Keenan, Presti, & Dillenburger, 
2019). Using combined theories from Albert Bandura’s (1997, 2001), 
Social Learning Theory (SLT) postulates a social learning experience 
(behaviorism) to the scientific attitude of technology, the cognitive 
process juste milieu mobile learning. Theory of Planned Behavior 
(TPB) Ajzen, iSALT Team (1993, 2014), and Sharples, Taylor et al, 
(2005), Mobile Learning Theory. Among these theories, we adapted 
(MLB-mobile learning theory), (PSLU, PCS, -theory of planned 
behavior) and (Attitude, BIP- social learning theory) with added 
broadband. Perceived usefulness by virtue of TPB, modified as 
perceived self-learner usefulness (PSLU) to meet the adequacy of 
mobile behavior of learner’s vis-a-vis internet broad-bandwidth 
efficiency. PSLU is the learner’s belief that using the mobile device will 
enhance good academic performance (knowledge-centered) (Davis, 
Bagozzi, & Warshaw, 1989). Behaviorism has a relationship with the 
intention of a user’s performance to influence community-centered 
learning (Yang, Lin, & Liu, 2017). Bandura’s book of reciprocal 

interaction, factors of influence; behavioral; environment; and personal 
inter-connected to mobile learning vicarious psychology affecting 
trends of crowdsourcing technology setting (Riley et al., 2019; Schunk 
& DiBenedetto, 2020). 

Research Hypotheses and Relevance of Literature Review 

Generally, social psychological theories of human behavior will 
subjectively produce a certain outcome of performance in mobile 
communication technology. Bandura (1991), underscore outcome 
expectancy in the expectancy-value model, linking Attitude, and 
Behavior expectation either learner or user-centered. The theory of 
plan behavior’s deductive evaluation of an individual’s behavior is 
congruent to perceived benefits to technology collaboration 
(Doargajudhur & Dell, 2018). Useful technology is a situation 
influenced by a network of crowd communities. The theory implies that 
the technology of mobile communication useful to learners’ self-
learning online is adequate, where the internet signifies crowd 
information sourcing, influenced by technology (Seidel, Langner, & 
Sims, 2017; Toyama, 2018). These attitudes correlate to behavior 
intention in performing the task in use of the mobile device to 
accomplished knowledge-centered.  

Conceptually, learning is personal, so the use of mobile 
communication in social learning theory (Bandura, 1991; Sharples et al., 
2005). Mobile technology offers personalized, just as learning is situated 
and collaborative community-centered. The perceived self-learner 

usefulness (PSLU) with personal smart mobile communication is a 
network to knowledge sharing (Alqahtani & Mohammad, 2015). 
Mobile communication technology is an innovative pedagogy in the era 
of self-learning regulated activities, enables crowd-learning no matter 
the location (Campbell, Detres, & Lucio, 2019). The advent of COVID-
19 set out many situational online distance courses, of which mobile 
technology communication engineers most of the programs across all 
learning centers globally (Lin et al., 2019). This is because smart-phones 
are common than computers for self-learning.  

The pool of information from the internet tasked a group of 
individuals, this serves online learning mechanisms for problem-
solving (Gün, Demir, & Pak, 2019; Su, Sui, & Zhang, 2018). Therefore, 
formal repository internet sites, social media interaction, central 
network sharing knowledge are crowdsourced technology (Rodríguez 
et al., 2017). A crowd community of learners, network communicated 
to others through the mobile facilitated knowledge sharing in task 
performance (Sheng & Hartono, 2015). Mozzala and Distefano (2010) 
and Crittenden et al. (2018) argued that a way of outsourcing to crowd 
task is a pool of information sharing, collaboratively aim to harness a 
wide variety of skills and learn from experts efficiently in a network. 
Boudrean and Lakhani (2015) concludes the online crowdsource via 
sharing or receiving information communication is solution enough for 
learners’ exchange of ideas and rejuvenate direct personal 
communication.  

H1:  Attitude has a positive and significant effect on behavior 
performance. 

H2:  Perceived Self-Learner Usefulness has a positive and 
significant effect on behavior intention. 

H3: Perceived Crowdsource (CS) is a positive/negative 
homogeneity to behavior intention. 

Mobile Learning behavior (MLB) is a social process, lifelong 
learning, occurred either formal or informal mediated by technology of 
users’ time. Empirically, teens are more with mobile activities in their 
daily lives than adults, this is because they are born in the internet era, 
they turn to abuse the information communication and technology. As 
of 2015, age ranges from (13-14years) of 83%, and 93% of (15-17years) 
have access to smartphones than tablets (Alenezi & Salem, 2017). 
According to Hossain et al. (2019), the psychology behind mobile 
learning behavior in relationship to intention acceptance and actual 
performance is based on policy. Mobile learning behaviors for 
knowledge sharing certainly perceived mobility and social support 
system rationale for user intention in performance. The Internet 
enables mobile communication to speed up information wirelessly 
network communication (Eze, Sadiku, & Musa, 2018). Constraints in 
the mobility of knowledge sharing, poor quality interruptions, seamless 
interruptions handover, expensive data the least to discuss the better. 
The hypothesis will ascertain the potential of internet broadband 
connectivity for effective mobile learning outcomes.  

H4: Mobile-Learning behavior mediates tie-in Attitude and 
Behavior performance. 

H5: Mobile Learning behavior mediates tie-in PSLU and 
behavior performance. 

H6: Mobile-Learning behavior mediates tie-in PCS and behavior 
intention performance.  

H7: Mobile Learning behavior has positive and significant effects 
on behavior intention performance. 
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H8: Broadband moderates on mobile learning behavior.  

H9: Attitude has a relationship with perceived self-learner 
usefulness. 

H10: Perceived self-learner usefulness has a relationship with 
perceived crowdsourcing. 

H11: Attitude has a direct relationship with perceived 
crowdsourcing.   

The behavior intention (BI) is to actualized technology as 
dependent constructs. The motivational aspects of how the intention to 
perform the behavior is likely that behavior will be performed (Bervell 
& Umar, 2018). The openness and readiness of the individual to 
perform an intended behavior could be immediate or otherwise 
(Ayvazo, 2015). Ajzen (1991) explains behavior as a function of 
compatible intention and perception of behavioral control to expect 
mobile behavior significantly affects behavior intention. In this 
instance, the intention is felt when the perceived behavior control is 
stronger in model performance. Learners’ instinct motivation is a 
conscious plan or decision to use mobile communication technology, 
though scholars differ in philosophy and/or psychology perspective in 
considering social behaviors, social psychology, and social cohesion 
(Pagani, 2014).  

Research Methodology and Data Collection 

 

The study quantitatively by the induction method of structural 
equation model formulated as Figure 1, the various relationships and 
structural model. The survey encompassed questionnaires using online 
KwikSurvey sent to respondents, mostly international students in 
China via emails, WeChat, and WhatsApp responses. Using the 
random sampling technique for the distributed 450 questions online 
retrieved 361 represented 80.2% of the respondent’s rate, no 
recompense is given to avoid biases. The study resulted in more male 
responses than females; 65.4% and 34.6%, respectively, from Table 1. 

The young internet user population has affirmed this study indicating 
age range (19-22years) overweigh the rest with 32% followed range (23-
25 years) with 23% and 27% from Table 1 all control variables are 
summarized. The general empirical study indicated 93% of social media 
users are teens within the age category of (18-29 years) presumable 
mobile learning de facto (Yang & Lin, 2019).  

In addition, the constructs were six with thirty items adapted from 
previous scholarly measurements, that met test reliability results. Some 
modifications were done to the questions to accurately suit this study of 
mobile crowdsourcing technology. In each construct measured with 
five items using the 5 point Likert score from strongly agree to strongly 
disagree (1-5), respectively (Beglar & Nemoto, 2014). The questions 
were skewed in negatives and positives to blurred away reliability 
problems in analysis (Sharma & Misra, 2017). Research ethics adhered 
to by assuring respondents of the confidentiality of data and purposely 
for academics.  

Data and Model Results Analysis 

The second generational approach of SEM (AMOS) for in-depth 
inter-relationships among latent constructs (Hair, Ringle, & Sarstedt, 
2013). Fundamentally, the structure employs combined quantitative 
data alongside the correlations and causal effect in the hypotheses of the 
study. Mathematically, the control variables estimation and Cronbach 
Alpha (@) from Table 2 with SPSS v.25 verified and confirmed the 
validity and reliability of constructs (Sánchez-Prieto, Olmos-
Migueláñez, & García-Peñalvo, 2016). In Figure 1, first using SPSS to 
examine the loading higher than 0.5 and fittest to the data (Van der 
Linden, Klein Entink, & Fox, 2010). The model test captured 
measurements and structural models for a satisfactory dimension of 
validity and reliability (Awang, Afthanorhan, Mohamad, & Asri, 2016). 
From Table 2, the CR ≥ 0.6 satisfied composite reliability benchmark. 
Firstly, some initial redemptions and refinements were carried out 
using SPSS for factor loadings; the lower loadings make way for 

ATTITUDE

PSLU

MBL

PCS

BBW

BIP

H1

H2

H3

H8

H6

H5

H4

H7

 
Note: PSLU = Perceived Self-Learner Usefulness, PCS= Perceived Crowdsource, BBW= Broad Bandwidth, MLB= Mobile Learning Behavior, BIP= Behavior 
Intention Performance 

Figure 1. Conceptual Framework 
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modifications indices of items in the measurement model. The 
structural model gave in some deleted items in the output factor 
loadings, as in Table 2 shows an acceptable threshold 0.7 for the 
structural equation model procedure. Table 2 indicates the highest 
factor loading is 0.930, and the lowest is 0.743. Secondly, the principal 
component analysis was carried out to show results higher than the 
threshold of 0.7 as in Table 2 (Fornell & Larcker, 2016; Hair et al., 
2014). A further test was done for convergent validity using the average 
variance extract (AVE) and composite reliability measures as in Tables 

2 and 3. Also, the AVE value higher than 0.5 sufficiently satisfies the 
benchmark of convergent validity for the items (Furr & Bacharach, 
2014). From Table 3, results analysis of AVE justifies the measurement 
model of latent constructs validates the correlations of values higher 
than discrepancy. It, therefore, goes further to juxtaposed the AVE 

square root value higher than correlations among the constructs, 
sufficient argument of convergent validity from Table 3. 

Measurements and Structural Model Evaluation 

Among the evaluation Fitness Indexes in the structural equation 
model, no agreeable scholarly indexes; however, Hair et al. (1995, 2010), 
recommended the least one fitness index of model fit. Generally, three 
categories of model fit, namely, absolute fit, incremental fit, and 
parsimonious fit. This study will report all the three with their 
respective informative model fit, level of each acceptance in Table 4, 
even though literature can vary in terms of cut-off thresholds by 
researchers considering the perspective of the study.  

Table 4 shows categories of model fit and their measurements 
considered Discrepancy Chi-Square, Root Mean Square of Error 
Approximation (RMSEA), Good of Fit Index (GFI), Adjusted Goodness 

Table 1. Demographics of the Study 
Control Variables Descriptions 

 

 
Frequency Percent Mean Std. Deviation Variance 

Gender 

Male 236 65.4 1.35 0.476 0.227 
Female 125 34.6    

Ages Ranges 

15yrs above 15 4.2 3.57 1.143 1.307 
16-18yrs 47 13.0    

19-22yrs 116 32.1    

23-25yrs 84 23.3    

29-30 above 99 27.4    

Education 

JHS 15 4.2 2.74 0.540 0.292 
SHS 66 18.3    

Bachelor 277 76.7    

Others 3 0.8    

Mobile Users 

Yes 346 95.8 1.04 0.200 0.040 
No 15 4.2    

Note: SD = Standard Deviation 

Table 2. Factor loadings of Data response 
Factor Loading Analysis Results obtained 

Variables 

 

Factor Loadings SMC 1-SMC CR AVE @ 

MLB1 .907 0.823 0.177 0.933 0.777 0.905 
MLB2 .891 0.794 0.206    
MLB4 .872 0.760 0.240    
MLB3 .854 0.729 0.271    
BBW2 .894 0.799 0.201 0.932 0.774 0.903 
BBW4 .882 0.778 0.222    
BBW1 .878 0.771 0.229    
BBW5 .864 0.746 0.254    

BI2 .860 0.740 0.260 0.909 0.715 0.868 
BI4 .857 0.734 0.266    
BI1 .841 0.707 0.293    
BI3 .824 0.679 0.321    

PSLU4 .844 0.712 0.288 0.876 0.640 0.862 
PSLU5 .835 0.697 0.303    
PSLU2 .774 0.599 0.401    
PSLU1 .743 0.552 0.448    
PCS2 .930 0.865 0.135 0.945 0.851 0.913 
PCS3 .929 0.863 0.137    
PCS1 .909 0.826 0.174    
Att2 .904 0.817 0.183 0.916 0.783 0.857 
Att1 .879 0.773 0.227    
Att3 .872 0.760 0.240    

Note: CR = composite reliability, AVE = average variance extract, @ = Cronbach Alpha 
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of Fit Index (AGFI), Comparative Fit Index (CFI), Tucker-Lewis Index 
(TLI), Normed Fit Index (NFI), and Chi-Square/ Degree of Freedom 
(Chsq/df) as hyphenated in Table 4 with their respective benchmarks 
(Awang, Afthanorhan, Mamat, & Aimran, 2017). The fitness indexes 
verified from the study of multiple categories of model fit shown in 
Table 4 acceptable benchmarks. This research is evidence that all 
measurements have good fitness per the results of the pooled-output 
values (Lewis, 2017). We, therefore, conclude all the measurement and 
structural models are acceptable in this study to crowdsource 
technology communication mobile behavior.  

Hypotheses Tested Results 

The study has examined the path regression coefficients of 
standardized and unstandardized measurement model results of the 
hypotheses tested shown in Table 6. From Figure 2 displayed path 
coefficients structural model results indication from Table 5 of 
exogenously H4 Attitude to MLB (β = 0.139, t = 2.276, p <.011), H5 
PSLU to MLB (β = 0.306, t = 2.867, p <.004) and H6 PCS to MLB (β = 
0.024, t = 0.353, p <.724) apart from the latter H4 and H5 satisfied the 
causal effect of positive significant to mobile learning communication. 

The result is a new dimensional twist of crowdsourcing technology 
ambient to individual-centered. Furthermore, H1Attitude to Behavior 
intention (β = 0.020, t = 0.364, p < .716), H2 perceived self-learner 
usefulness to behavior intention (β = 0.551, t = 5.298, p < .000). Again, 
perceived crowdsource to behavior intention (β = -0.117, t = -1.889, p 
< .056) are all remarkable H1, H2 and H3 satisfactorily positive and 
significant to behavior intention of using mobile communication 
technology in performing learning routines Hwang and Fu (2019), also 
accepting the current negative effect of crowdsourcing technology. 

In the structural correlation indicators from Table 5, Figure 2, H9 
Attitude to perceived self-learner usefulness shows a strong 
relationship of 0.70. H10 perceived self-learner usefulness to perceived 
crowdsource is 0.79 whilst attitude to perceived crowdsource is 0.83 a 
correlation below the threshold of 0.85. Therefore, the latent 
exogenous of Attitude, Perceived Self-Learner Usefulness and 
perceived Crowdsource (CS) relationships satisfied the discriminant 
validity test because they are below 0.85 (Awang et al., 2017). The value 
of the coefficient determinant of R² = 0.74 thus 74% estimation power 
of endogenous behavior intention didactic with mobile technology 
innovation. 

Table 3. Fornell-Larcker Discriminant Validity Results 
Variables Means(SD) BI ATT PSLU PCS BBW MLB 

BI 3.70 (1.26) 0.720 
     

ATT 4.08 (1.09) .725** 0.780 
    

PSLU 1.92 (1.20) .702** .690** 0.702 
   

PCS 3.91 (130) .564** .596** .614** 0.796 
  

BBW 3.91 (1.21) .529** .563** .556** .681** 0.799 
 

MLB 4.12 (1.16) .518** .502** .489** .543** .635** 0.725 

Note: BI = behavior intention, ATT = attitude, PSLU = perceived self-learner usefulness, PCS = perceived crowdsource, BBW = internet broad bandwidth, MLB = 
mobile learning behavior, SD= standard deviation. Correlation sign is ** P < 0.005 

Table 4. The goodness of Fit Indexes Measurement (SEM) 

Categories Indexes Threshold 

Results 

Measurements model Structural model 

Absolute fit 
Chi-Square P > 0.05 0.005  0.005  

RMSEA >0.08 0.052  0.057  
GFI >0.90 0.907  0.977  

Incremental fit 

AGFI >0.90 0.883  0.903  
CFI >0.90 0.956  0.978  
TLI >0.90 0.957  0.953  
NFI >0.90 0.923  0.948  
IFI >0.90 0.956  0.968  

Parsimonious fit Chisp/df <3.0 1.992  2.621  
Note: RMSEA= root man square of error approximation, GFI= good of fit index, AGFI= adjusted goodness of fit index, CFI= comparative fit index, TLI= tucker-
lewis index, NFI= normed fit index, Chsq/df= Chi-square/degree of freedom, *P < 0.01, **P < 0.001 and **P < 0.005 
 

Table 5. Regression Path Coefficients (β)Weights 
Hypothesis Path Estimate SE. CR. P-value Results 

BBW <--- PCS .168 .073 2.292 .021 satisfied 
H4- MLB <--- ATT .139 .061 2.276 .011 Satisfied 
H5- MLB <--- PSLU .306 .107 2.867 .004 Satisfied 
H6- MLB <--- PCS .024 .068 .353 .724 Unsatisfied 
H8- MLB <--- BBW .690 .224 3.075 .002 Satisfied 

BI. <--- BBW .074 .045 1.636 .102 Satisfied 
H7- BI. <--- MLB .010 .054 .188 .851 Unsatisfied 
H1- BI. <--- ATT .020 .056 .364 .716 Unsatisfied 
H2- BI. <--- PSLU .551 .104 5.298 *** Satisfied 
H3- BI. <--- PCS -.117 .062 -1.889 .056 Satisfied 

Note: Sign ***P < 0.005, **P <0. 001 and *P <0. 01 respectively. BBW = broad bandwidth, PCS = perceived crowdsource, ATT = Attitude, MBL = mobile learning 
behavior, PSLU = perceived self-learner usefulness, BI = behavior intention performance 
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The elaborative hypothesis of mobile learning behavior to behavior 
intention induced the model insignificantly (β = 0.010, t = 1.636, p 
<.851), therefore, complete mediation is achieved, broadband to mobile 
learning behavior is magnified significantly (β = 0.131, t = 2.818, p 
<.002). The study objective for effective broadband has efficiently 
enhanced mobile learning behavior in a collective learning 
environment as well as self-learner usefulness for knowledge 
acquisition (Baek & Touati, 2017; Yan et al., 2020). The moderation 
effect has proved a correlation of mobile learning on behavior intention 
from Table 5. 

The mediation effect Table 7, of mobile learning behaviors on 
behavior intention performance on Attitude, PSLU, and PCS using the 
PROCESS condition of path analysis regression performed (Hayes, 
2017). Table 7 shows direct effect of (β = .4052, t = 8.3373, p = < 0. 001) 
which is positively significant. The indirect effect also shows significant 
results of (β = 0.0260, p= < 0.005), (β = 0.0312, p = < 0.006) and the 
complete standardized shows significant results of (β = 0.0258, p = < 
0.005). The behavior intention of learners’ prior performance of mobile 

effectiveness was regressively influenced by mobile learning behaviors 
of the technology Attitude, PSLU, and PCS. Impressively and by 
magnitude, all the exogenous variables were decreased and remained 
significant in the study. The study mediation is complete with MLB to 
BIP (β = 0.0258, p = < 0.005), thereby, supporting H4, 5 and 6 in the 
study. 

Figure 3a Perceived crowdsource (IV) to mobile learning behavior 
(DV) moderation (BBW) is a complete buffer interaction congruence 
to the digital content adoption by academics. The consistency though 
significance broadband on mobile learning, justification of the 
moderation effect on technology communication. However, the 
insignificant indirect effect of mobile learning on behavior intention 
from Appendix 2, unstandardized path regression reduction of 
correlation effect indication dampen the structural model of the 
mediation effect. Appendix 2 indication of unstandardized values of 
the regression path coefficient, showing the interaction effects of 
broadband causality on mobile learning behavior to perceived 
crowdsource. The output significantly shows exogenous broadband 

 
Figure 2. The Unstandardized Path Regression Path Coefficients for the Structural Model 
 

Table 6. Correlations of the Covariance 
 

Hypotheses 
 

Estimate SE. CR. P Label 

H9 =ATT <--> PSLU .336 .042 8.038 *** satisfied 

H10 =PSLU <--> PCS .348 .042 8.391 *** Satisfied 

H11 =ATT <--> PCS .335 .040 8.293 *** Satisfied 

Note: ATT = Attitude, PSLU = perceived self-learner usefulness, PCS = perceived crowdsource, correlation is sign @ ***P < 0.005 

Table 7. Mediation effects IV (ATT, PSLU, PCS) and DV (MLB) of the study 
DV Effect 𝜷𝜷 t-values p-values 

 0.4052 0.486 8.3373 0.001 
MBL 1 0.026 0.0135 0.0055 0.058 
MBL2 0.0312 0.0162 0.0066 0.069 
MBL3 0.0258 0.0133 0.0055 0.057 

Note: MBL1 = indirect effect of IV on DV, MBL2 = partially standardized effects on IV on DV, MBL3 = completely standardized effects IV on DV 
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(BBW) correlated effect to behavior intention β = 0.82 and mobile 
learning β = 0.31, the input significantly reaffirms the induced value of 
mobile learning behavior to behavior intention β = -0.03 in the context 
of crowdsourcing community.  

DISCUSSION AND CONCLUSION 

The study empirical findings are Bandura’s Social Learning Theory 
(SLT) and TPB. The variance explained about 74% of the behavior 
intention of mobile learning intervention against the covariance. The 
heterogeneity of knowledge-seeking web-based setting, inured 
crowdsource community setting through the standardized path 
coefficient. Perceived crowdsource is consistent with perceived risk and 
subjective norms on cloud technology adoption (Ho, Ocasio-Velázquez, 

& Booth, 2017). The findings have a paradoxical effect of perceived self-
learner usefulness, and Attitude of learners’ positively significant. 
However, perceived crowdsource negatively significant to behavior 
intention performance but, positively significant to mobile learning 
behavior. Ren et al. (2020) showed significant situational difference 
effects of communication WOC. The study magnitude effect of 
perceived crowdsource is significant to broadband in pursuance to 
learning. To the best of the author’s knowledge, this is a first study 
crowd-community social learning determinant of individual or group. 
Mason and Watt (2012), allude that, interconnected learners can diffuse 
through crowd-community experience for a collective academic ride. 
Undoubtedly, students are intrinsic in social network crowd tasks for 
information sharing, community interactivity, collaborative, collective 
learning environment with convenience (Barber, King, & Buchanan, 
2015). Similarly, the study found that Attitude, PSLU, has a significant 

 
Figure 3a. Moderating effect of broadband (BBW), on the relationship of perceived crowdsource (PCS), and mobile learning behavior (MLB) 
 

 
Figure 3b. Moderating Effect of broadband (BBW) on the relationship of perceived crowdsource (PCS) and behavior intention performance (BIP) 
Note: BIP = behavior intention performance, PSC= perceived crowdsource, MLB= mobile learning behavior, BBW = broad bandwidth. 
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relationship with behavior intention on social learning. Our study clue 
came from the current teaching methodology adopted by the University 
of Science and Technology of China (USTC) mixed culture of 
international students for continuous semester lectures during the 
locked-down of COVID-19. The study contribution is a crowd-
community of learners from diverse cultures sharing knowledge 
facilities by mobile self-centeredness. An effective internet broadband 
portal enhances mobile-learning constructively. The finding of mobile 
technology communication in an environment of effective wireless 
networks in China is consistent with (Mayer, 2020). However, is 
inconsistent with LEGO’s (2014), organizational learning with 
crowdsourcing, IT-enabled coordination, and collaboration system 
core to the businesses. Therefore, the insignificance can be related to 
perceived crowdsource in the context of academia, as such does not 
affect behavior intention but affect mobile learning social influence.  

In another development, gamified crowdsourced systems are 
scattered empirical pieces that need to be scholarly synthesized into a 
body of intellectual capacity. It is evident ‘the crowds’ potential in 
knowledge acquisition designed for educational ‘problem-solving’ is a 
technology novel phenomenon. In the same vein, mobile learning did 
not affect behavior intention, which is due to the mediation role, and 
users engaged technology more on social interactivity than performing 
learning outcomes. In the study of Abu-Al-Aish (2014), mobile learning 
and wireless networks are indisputable gained performance in the 
educational arena. Broadband causality of mobile learning is newly 
explored research interest, due to students’ continuous use of online 
education. Consistent with blended and distance learning attitude 
(Bervell & Umar, 2018; Falode, Chukwuemeka, Bello, & Baderinwa, 
2020). However, it is crystal clear the absence of effective broadband 
(BBW) renders mobile learning useless, therefore, expected to 
moderate mobile learning behavior, which eventual met the study 
expectation. Attitude to mobile learning appears hypothetically 
significant (weak) in the study; the majority of studies from professional 
scholars have proven consistent with Attitude on behavior intention ( 
Karimi, 2016).  

In conclusion, learner’s behaviors in knowledge sourcing within a 
crowd community network with mobile communication. Eventually, 
mobile communication has witness effective broadband to ensure self-
centered learning vis-à-vis crowdsource technology. This study has 
contributed to creating a web of crowd community-learners network. 
The study has also enhanced crowdsource technology in self-centered-
learning for collaborative performance in education through effective 
broadband in Pro-COVID-19. The crowd of learners often 
interconnected towards ‘problem-solving’ usual using mobile-learning. In 
the case of any effective knowledge communication, developmental 
faculty, and the ability to learn new. The broadband and mobile-
learning moderation-mediation interactivity in the model is marvelous 
as hypothesized. Mobile dominance in recent times over computers is 
justifying the magnificence of community crowdsource technology. We 
have accurately evaluated the crowdsourced technology of mobile 
learning as an online facility in physical distancing situations, also due 
to unavailable one-learner-one-computer in societies. Therefore, 
instigates government policy of ensuring wider broadband for mobile 
learning behavior to achieving performance in communities. A 
potential networking group or individual solving intellectual, 
knowledge-connect as crowdsourced (Morschheuser, Hamari, 
Koivisto, & Maedche, 2017). The initiative of crowdsourcing integrated 
with academic learning novel mobile learning is an open innovation IT-

information processing with learning experience embedded with the 
knowledge sharing paradigm. As information begot knowledge, 
knowledge begot resource that serves future individual educational 
development.  

Limitations and Future Research  

We studied the premix of crowdsourcing technology in 
communication efforts to enhance the continuous use of mobile 
learning. This study sourced data from international students in China 
during the COVID-19 period, but, cannot account for underdeveloped 
technologies. The proposed model, though, represented trends of 
achieving self-regulated learning mechanisms, in crowd-based 
community mobility. Firstly, the study is based on social psychology 
with a convenient sampling technique, drawn sampling from one 
section; in the future, the sample can cut across developing regions. 
Secondly, future studies are intended to use philosophical theory from 
“Great Learning” from Confucius’s analects assessment community-
based crowd learning in today’s’ education. “Great Learning” theory 
engaging learners’ in a society cluster to study their network roles 
against performance indices in community-knowledge sourcing is 
paramount. 
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APPENDIX 1: QUESTIONNAIRES 

Overview study trend and questionnaires 

Objectively, seeks to investigate students/learners respond inured in the field of ‘mobile juste milieu, science, and communication crowdsourced 
technology. The crowd based-community of learners explorative, behavioral mobile communication a conservative continuous mechanism in 
academia. The questionnaires inclusively survey instruments for universities during Covid-19. Achieving this, we use Perceived Crowdsource 
(PCS) moderated by Broadband Mediation Mobile learning behaviors in universities in China. The researchers found major crowd tasks were 
resolved via mobile systems. The responses are expressed using the 5-point Likert scale, ranging from 1= “strong disagreed” to 5= “strong agreed” 
respectively.  

Demographics Measures 

1. Gender: M F  

2. Your level of education? 

3. JHS: SHS: bachelor: masters’: Ph.D.: others 

4.  Age; 18-25 26-34 35-45 

5. Do you use a smart mobile phone? Yes No  

6. Do you often search the internet with phone data? Yes No  
Constructs Measurements 

Attitude (Ajzen, Netemeyer, & Ryn, 1991; Schultze, U., 2002)  

1. I intend to use mobile learning anytime and anywhere on campus for academics. 

2. Using mobile learning eases my retention to the group task. 

3. Using mobile learning motivates my learning capacity. 

4. Mobile learning encourages my reading habit. 

5. I am always with my mobile device for information.  

6. I enjoy using mobile learning as I move around. 

Perceived Self-learner Usefulness (PSLU) (Bhattacherjee, Perols, & Sanford, 2008; Venkatesh, Morris, Davis, & Davis, 2003) 

7. Having access to my mobile improves my knowledge of sourcing. 

8. Using a mobile is less difficult to search for information online. 

9. It’s easy using mobile to share the content of learning or documents to colleagues. 

10. I effectively download learnable materials with a mobile device. 

11. Using a mobile is less stressful for reading in a go.  

Perceived Crowdsourcing (PCS) (Allen, Chandrasekaran, & Basuroy, 2018; Ho, Ocasio-Velázquez, & Booth, 2017) 

12. Crowd-based learning is network informative. 

13. Using mobile is easy to crowd solve problems in the network. 

14. I prefer using mobile to connect with learners than a computer.  

15. Community-based group discussions make learning effective via mobile.  

16. Teacher-learner discussed via mobile group chatting. 

17. Crowd internet content is easy to access for knowledge collaboration.  

Mobile Learning Behavior (MLB) (Ibrahim, 2018; Lin, Wang, Li, Shih, & Lin, 2016) 

18. I always use a mobile device to record information and knowledge sourcing. 
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19. I use mobile interactive to chat for learning outside class. 

20. I use mobile information to share knowledge anytime. 

21. Mobile network compliments my crowd-based task. 

22. Using mobile chatroom for idea exchanges and collective learning. 

23. Mobile learning motivates group tasks.  

Internet Broadband system (BBW) (Lin et al., 2016; Yan, 2019) 

24. Broadband fastens mobile internet surfing. 

25. Mobile breakthrough 5G is easier than a computer. 

26. Mobile service quality is higher and user-friendly. 

27. Mobile data ensure Covid-19 distance learning. 

28. The mobile system appeals to the user with effective broadband.  

Behavior Intention Performance (BIP) (Ajzen et al., 1991; Bhattacherjee, Perols, & Sanford, 2008) 

29. I intend to mobile learning for crowdsourcing tasks. 

30. In the future, I will continue to use a mobile device for knowledge assessment. 

31. Moving around with access to mobile facilitates my learning at any time. 

32. I will use mobile learning in solving my academic problems. 

33. Mobile learning makes reading simple and easier anywhere.  

34. I intend to link up with teachers and colleagues via a mobile smart tool. 
 

 

APPENDIX 2  

The Standardized Path Regression Path Coefficients for the Structural Model 
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